
Journal of Applied Mechanics and Technical Physics, Vol. 45, No. 1, pp. 54–59, 2004

MATHEMATICAL MODEL FOR THE NUMERICAL SOLUTION OF

NONSTATIONARY PROBLEMS IN SOLID MECHANICS

BY A MODIFIED GODUNOV METHOD

UDC 519.683.2V. L. Kolmogorov,1 O. A. Makotra,2 and N. Ya. Moiseev2

A mathematical model of substance behavior under developed elastoplastic strains is worked out for
solving one-dimensional problems of solid mechanics. The model is based on the fundamental laws
of conservation of mass, momentum, and total energy, Wilkins model, kinetic model of substance
destruction, and modified Godunov method for the numerical solution of problems in mathematical
physics. A hybrid difference scheme is constructed, which approximates acoustics equations with
constant coefficients in smooth flows for the case of plane symmetry with the second order in time
and space.
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Introduction. A mathematical model of the behavior of ideally plastic solid isotropic materials under
conditions of developed elastoplastic strains is considered for solving one-dimensional nonstationary problems of
solid mechanics by the modified Godunov method [1, 2]. It is assumed that the material is isothermal, Poisson’s
ratio is constant, and there are no body forces. The governing equations of the model are the laws of conservation
l of mass, momentum, and total energy. This system of equations is supplemented by constitutive relations for the
description of elastoplastic properties of substances in the Prandtl–Reuss form under the von Mises flow rule [3]
and by equations of material damage and destruction.

This paper involves consideration of two destruction models, i.e., the kinetic model of metal destruction [4]
developed at the Institute of Machine Science of the Ural Division of the Russian Academy of Sciences and based on
the concept of gradual accumulation of microdamages in the metal in the course of strain evolution and the model
of instantaneous spalling based on the concept of material destruction on reaching the critical stress.

To improve the accuracy of numerical solutions, regulated approximational antidiffusion is introduced for
correction of numerical fluxes [5] obtained by the Godunov method. The modified difference scheme on smooth
solutions approximates acoustics equations with constant coefficients in the case of plane symmetry with the second
order in time and space.

The difference equations of motion are derived with allowance for consistent approximation [6], which, in
combination with the difference equation for the total energy, ensures approximation of the internal energy equation.
Because of this, there is no effect of partial transfer of kinetic energy to internal energy.

A hybrid difference scheme is constructed for solving one-dimensional problems of elastoplasticity in the
Lagrangian variables by the modified Godunov method.

Test calculations were performed and the numerical results were compared with experimental data. The
results presented show that the modified Godunov method with the use of the model of substance destruction can
be applied to solve problems of shock and high-velocity impact.
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Mathematical Model. The governing equations for solving problems with a single space derivative are
written in the form of the laws of conservation of mass, momentum, and total energy:

∂w

∂t
+

∂(FQ)
∂q

= f2,
∂r(q, t)

∂t
= u(q, t). (1)

In these laws,

w =

 V

u

ε

 ; F =

 −u

−σ1

−σ1u

 ; f2 =

 0
−σ2 ∂Q/∂q

0

 ;

r is the Euler coordinate, q is the mass Lagrangian variable, t is the time, V = 1/ρ is the specific volume, ρ is the
density, u is the component of the velocity vector, ε = E +0.5u2 is the total energy, E is the specific internal energy
of the substance, σ1 and σ2 are the components of the tensor of principal stresses, and Q(r) = rν (ν = 0, 1, and 2
for plain, cylindrical, and spherical symmetry, respectively).

System (1) is supplemented by the equations of state of the substance p = p(ρ,E) and constitutive relations
for the stress-tensor deviator, which are written in the form of the Prandtl–Reuss equations [3]

dSj

dt
− 2Gej + λSj = 0 (j = 1, 2, 3),

where Sj are the components of the stress-tensor deviator, G is the shear modulus, and λ is a scalar dissipative
function.

The model of an ideal elastoplastic Mises body with a constant yield point is described by the function

λ =

{
0 if I1 < 0 or I1 = 0 and D < 0,

3GD/σ2
s if I1 > 0 or I1 = 0 and D > 0.

Here I1 = S2
1 +S2

2 +S2
3 , D = S1e1 +S2e2 +S3e3, e1, e2, and e3 are the components of the deviator of the strain-rate

tensor, and σs is the yield point under uniaxial tension.
The kinetic model of metal destruction is based on the concept of gradual accumulation of microdamages

in the metal in the course of strain evolution [4]. The condition of plastic deformation of the material without
destruction is written in the form of the differential equation

dΨ
dt

=
H

Λp
,

where H = 2
√
|e1e2 + e3e1 + e3e2| is the intensity of the shear strain rate, Λp(k1, k2,H) is the material plasticity,

0 6 Ψ 6 1 is the damage, and k1 and k2 are the dimensionless parameters of the strain state. The time of material
destruction corresponds to the time when Ψ reaches unity.

The simplest model of instantaneous spalling is based on the concept of material destruction on reaching
the critical stress σ > σcr.

Difference Scheme. At the initial time t = t0, we construct a grid with the coordinates (nodes) qj+1/2

and qj−1/2, with the centers at the points qj = 0.5(qj+1/2 + qj−1/2), and with the space steps hj = qj+1/2 − qj−1/2

[hj = ρj(Rν+1
j+1/2 −Rν+1

j−1/2)/(ν + 1) is the mass Lagrangian variable; Rj+1/2 and Rj−1/2 are the values of the Euler

variable in the grid nodes]. The quantities wj = [(V, u,E, ρ, Ψ)j ]t with an integer superscript j correspond to the
points qj (cell centers) and are calculated at the times tn + τ from the values of wj = [(V, u,E, ρ, Ψ)j ]t with the
subscript j specified at the times tn. The quantities F ∗

j±1/2 = [(U,Σ1,Σ1U)∗j±1/2]
t with a half-integer subscript are

intermediate and correspond to the points qj+1/2 and qj−1/2. Here Σ∗1 is the value of the first component σ1 of the
tensor of principal stresses and U∗ is the velocity; [ . . . ]t indicates transposition of the row-vector.

After writing Eqs. (1) in the form of integral conservation laws, we integrate them over a certain domain S:
q ∈ [qj+1/2, qj−1/2] and t ∈ [tn, tn +τ ]. Applying the Gauss–Ostrogradskii theorem to the integrals over the domain,
we obtain a difference scheme, which is written in the vector form as

wj = wj − τ(F ∗
j+1/2 − F ∗

j−1/2)/h + τf0
2 V 0

g (2)

(f0
2 = [0,−σ0

2 , 0]t). The quantity σ0
2 will be defined below. The quantities F ∗

j±1/2 are intermediate and are calculated
at the boundary of two neighboring cells. The method of choosing the intermediate values determines the specific
difference scheme. Thus, in the Godunov method, these values are called “high” and are calculated from the
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Fig. 1. Crack model in the cell.

solution of the problem of decay of an arbitrary discontinuity arising on the boundary of two neighboring cells.
The components of the vector F ∗

j±1/2, which is denoted by Fj±1/2 in the Godunov method, are calculated by the
formulas [7]

Uj+1/2 =
aj+1uj + ajuj+1

aj+1 + aj
+

σ1j+1 − σ1j

aj+1 + aj
, Σ1 j+1/2 = aj+1aj

uj+1 − uj

aj+1 + aj
+

aj+1σ1j+1 + ajσ1j

aj+1 + aj

(aj = ρjcj is the mass velocity of sound and cj is the longitudinal velocity of sound).
For uj < 0, we have Vj+1/2 = Vj + (σ1j − Σ1j+1/2)/a2

j and S1 j+1/2 = S1j − 4b2
j (1/Vj+1/2 − 1/Vj)/3. For

uj > 0, we obtain Vj+1/2 = Vj+1 + (σ1j+1 − Σ1j+1/2)/a2
j+1 and S1 j+1/2 = S1 j+1 − 4b2

j+1(1/Vj+1/2 − 1/Vj+1)/3.
Here, bj is the transverse velocity of sound.

The system of governing difference equations (2) is supplemented by the equations

((Si)j − (Si)j)/τ − 2G(ei)0j + λj(Si)0j = 0 (i = 1, 2), (S3)j = −(S1 + S2)j .

The kinetic equation allowing for destruction is approximated by the difference equation

Ψj = Ψj + τH(F ∗
j+1/2, F

∗
j−1/2)/Λpj .

The value of Λpj = Λp = Λp(kj) can be obtained from the table of experimental data in [4].
Antidiffusion. One method of improving accuracy of numerical solutions obtained by the Godunov method

is to introduce antidiffusion for correcting numerical fluxes. To improve the accuracy of solutions obtained from
scheme (2), we use the approach suggested by Moiseev in [5]. According to [5], the components of the vector F ∗

j±1/2

are calculated by the formulas

F ∗
j+1/2 = Fj+1/2 − µ(τj+1/2 − 0.5τ)

∂f

∂t
. (3)

The second addend in (3) has the meaning of antidiffusion with respect to Fj±1/2 [5]. The parameter 0 6 µ 6 1
is the delimiter of antidiffusion, and its value is chosen depending on the flow parameters, thus, enabling one to
obtain quasi-monotonic profiles of the quantities being calculated.

By virtue of the equations obtained by linearization of Eqs. (1) for the plane case, the time derivative ∂f/∂t

is replaced by the space derivative. The space derivative can be approximated by a combination of difference
derivatives calculated at the time tn (at the lower level) and at the time tn +τj+1/2 from the values of Fj±1/2. If the
derivative is approximated over the values from the lower level, we obtain a scheme with normal dispersion. If the
derivative is approximated using the values of Fj±1/2 found from the solution of the arbitrary discontinuity decay,
we arrive at a new scheme with anomalous dispersion. In the first case, the solution oscillations in the vicinity of a
strong discontinuity occur behind the discontinuity front; in the second case, they arise ahead of this front.

For µ = 0 in (3), we have F ∗
j+1/2 = Fj+1/2 and the difference scheme (2) approximates the original differential

equations on smooth solutions for the case of plane symmetry with the first-order in time and space, it does not
require any additional artificial viscosity, and allows obtaining monotonic solutions for a wide class of problems
[5, 8].

For µ = 1 in (3), scheme (2) approximates acoustics equations with constant coefficients on smooth solutions
for the case of plane symmetry with the second-order in time and space. Taking into account the above-mentioned
properties, we construct a hybrid difference scheme where the values of the parameter µ are chosen close to unity
for calculating smooth flows and close to zero on strong discontinuities.

Consistent Approximation. As is known, the original Godunov scheme with the equation of motion
written in a divergent form involves the effect of partial transfer of kinetic energy to internal energy. It is shown
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Fig. 2. Pressure distribution over the space coordinate: µ = 0 (1), 0.1 (2), 0.5 (3), and 0.9 (4).

Fig. 3. Pressure distribution versus the number of division points N (µ = 0.9 and C = 0.9): N = 62 (1),
125 (2), 250 (3), 500 (4), 1000 (5), 2000 (6), and 4000 (7).

in [6] that this effect can be eliminated if the calculation of pressure in the right side of the equation is consistent
with the calculation of “high” values of pressure at the cell edges. In this case, the pressure is chosen so that the
difference equations approximating equations of motion in divergent and nondivergent forms should be equivalent.
In accordance with this approach, the quantities in the right side are calculated from the equations

σ0
1j = −p0 + S0

1 = 0.5(Σ∗1 j+1/2 + Σ∗1 j−1/2) = −0.5(P ∗
j+1/2 + P ∗

j−1/2) + 0.5(S∗1 j+1/2 + S∗1 j−1/2).

The second component of the deviator S0
2j is found from the condition I1(S) = S0

1 + S0
2 + S0

3 = 0 and is equal to

S0
2j = −0.5S0

1j = −0.25(S∗1 j+1/2 + S∗1 j−1/2).

Such a choice of values makes it possible to eliminate partial transfer of kinetic energy to internal energy and
provides approximation of the internal energy equation

∂E

∂t
− Qσ1

∂u

∂q
= σ1u

∂Q

∂q
− u(S1 − S2)

∂Q

∂q

in the difference scheme (2).
Destruction Process. The process of high-velocity impact of solids is accompanied by versatile physical

phenomena depending on the geometry of interacting bodies, their strength characteristics, impact velocity, and
other factors. In particular, materials are mechanically destroyed under the action of tensile stresses. To take
destruction into account, numerical methods employ various destruction criteria. The destruction processes of the
substance in a cell can be modeled in different ways [9]. We use two models in the present paper. In the first
model, the original material in the cell is substituted by a powder substance, which experiences no shear and tensile
resistance. The pressure and tangential stresses are assumed to be equal to zero. In the second model, crack
formation is simulated in a cell where substance destruction occurred: the cell is divided into two subcells whose
left and right boundaries qj = {xL, xR} correspond to crack edges (Fig. 1).

If xR > xL, the crack exists. If xR < xL, the crack is closed. The boundary condition of the free-surface
type is imposed on these boundaries, and then the subcells are calculated in a usual manner.

Calculation Results of Model Problems. We give some results of numerical calculations.
Problem 1. The Numerical Calculation Results are Compared with the Analytical Solution. For barotropic

processes of medium motion, we consider the equation of state of the form [10] P = A(ρ/ρ0 − 1). The following
material constants are used: A = 75 GPa, ρ0 = 2.7 g/cm3, ν = 0.333, σs = 0.3 GPa, and G = 26. The boundary
conditions are
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Fig. 4. Calculated velocity of the uranium free surface versus time: 1) model of instantaneous spalling with
cracks; 2) model of instantaneous spalling with an undamaged cell; 3) kinetic model with cracks; 4) kinetic
model with an undamaged cell; 5) experimental data of [11].

p(t)
∣∣∣
R=0

= 2 GPa, p(t)
∣∣∣
R=12

= 0.

The calculation results are shown in Figs. 2 and 3.
Problem 2. Modeling of Spalling Destruction of Uranium under Conditions of High-Velocity Impact.

A system consisting of an impactor and a target is set in the calculation. The impactor and target material is
uranium. The impactor velocity is wim = 0.1750 km/sec. In the initial state, the impactor density is ρ = const;
P = 0. The target is at rest, and its initial density is ρ = const; P = 0. The target thickness ∆t = 1.513 mm is two
times greater than the impactor thickness ∆im = 0.768 mm. Spalling in uranium is to be numerically modeled. The
equations of state are chosen in the Mie–Grüneisen form. The material constants are ρ0 = 19.04 g/cm3, ν = 0.205,
σs = 0.9 GPa, and G = 88.0. The antidiffusion parameter is µ = 0.9, and the Courant number is C = 0.9. The
number of division points is Nim = 50 for the impactor and Nt = 100 for the target. The experimental data for
this problem are taken from [11]. The calculation results are plotted in Fig. 4. Fig. 4b shows a scaled-up fragment
of Fig. 4a. It is seen that the free-surface velocity depends on the destruction model used (Fig. 4b). At the initial
stage of motion, the numerical results are in good agreement with the experimental data, but a certain difference
is observed after passing the first minimum (Fig. 4a).

It follows from the presented results of solving test problems that the numerical solutions obtained by the
above-described mathematical model agree with analytical solutions and experimental data. The analysis of the
results also shows that the kinetic model of substance destruction can be used to solve problems of shock and
high-velocity impact.
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